A typical Wilkinson power divider is made of quarter-wave transformers:

- The quarter-wave transmission lines have characteristic impedance $Z = \sqrt{2}Z0 \approx 70.7 \Omega Z$
- Resistor value: R=2Z0

The transmission line length is a quarter wavelength $(\lambda/4)$ at the center frequency.

The wavelength in a substrate is given by:

$$\lambda_g = \frac{\lambda_0}{\sqrt{\varepsilon_{eff}}}$$

where: $\lambda_0 = \frac{c}{f_0}$

c is the wavelength in free space. (c= 3×10^8 m/s).

 ε_{eff} is the effective dielectric constant of the substrate, which can be approximated by

$$\varepsilon_{eff} = \frac{\varepsilon_R + 1}{2} + \frac{\varepsilon_R - 1}{2} \left(1 + 12 \left(\frac{H}{W} \right) \right)^{-0.5}$$

h is the substrate thickness and W is the width of the transmission line.

The physical length (L) of the transmission line is: $L = \lambda/4$